Conics with Geometry Expressions
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Introduction

Geometry Expressions automatically generates algebraic expressions from geometric
figures. For example in the diagram below, the user has specified that the triangle is right
and has short sides length a and b. The system has calculated an expression for the length

of the altitude:

In this article, we create a set of examples investigating conics with this tool.

Although Version 1 of Geometry Expressions does not have conics (other than circles)
as built in types, they can be studied using loci.




Example 1:  Circle of Apollonius
The Circle of Apollonius is the locus of points the ratio of whose distance from a pair of
fixed points is constant:

= 2Xaa2+ - (1+k2 ey (+k)=0

How do we know this is a circle?

What is the center and radius?




You can always get Geometry Expressions to tell you: draw a circle and set its equation to
be the same as the locus equation (copy and paste works fine)

E = 2.xaa* & 1+k2)+v2 (1+k7)=0




Example 2: Intersection of two tangents to the curve y=x*2
We create the point (x,x"2) and draw its locus as x goes from -3 to 3. Now we create two
tangents to the curve, and examine their intersection.




Example 3: Parabola as locus of points equidistant between

a point and a line
Here is the equation of the parabola which is the locus of points equidistant from the

point (-a,0) and the line X=a:

= Y2+4-X-a=0 Xea
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Example 4: Parabolic Mirror
A parabolic mirror focuses parallel rays into a single point. Where is that point? We

create the parabola y =a [k” and reflect a ray parallel to the y axis in the the tangent to
the curve. We examine the y intercept of the image:

X=0




Example 5: Squeezing a circle between two circles
Take a circle radius 2a centered at (a,0) and a circle radius 4a centered at (-a,0). Now look
at the locus of the center of the circle tangent to both.

2 2 2
72-a -8x -9y =0

It’s an ellipse. From the drawing we can see that the semi major axis in the x direction is
3a. What is the semi major axis in the y direction?




Example 6: Ellipse as a locus
Here is the usual string based construction of an ellipse foci (-a,0) (a,0):

4 2 2 2 2 2 2 2
L 4L -a-4L -y +x -[—4-L +16-a ]=0




Example 7: Archimedes Trammel

A mechanism which generates an ellipse is Archimedes Trammel. The points C and E
are constrained to run along the axes, while the distance between them is set to a-b. We
trace the locus of the point D distance b from E along the same line. This gives an ellipse

with semi major axes a and b:

2.2 2
a b -b -

2 2 2
a -y =0

b -b -x
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Example 8: An Alternative Ellipse Construction
Here is a construction (ascribed to Newton) which builds the ellipse from concentric
circles radius equivalent to the semi major axes

2 2

2.2 2 2
-a b +b -x +a -y =0
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Example 9: Another ellipse
This time take a circle and a point, and the location of all points equidistant from the
circle and the point:

= 4-Y2-r2+4-a2-rz—r4+)(2-[—16-a2+4-r2)=0
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Example 10: “Bent Straw” Ellipse Construction

Here is another ellipse construction. Geometrically observe that the semi major axes are
x-a and x+a. Can you verify this from the algebraic expression?

.
= -a*+2220%b* ¢ (a>2-ab+b? Y% (aP+2-a-b+b7)=0
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Example 11: Similar construction for a Hyperbola
If we do a similar construction, with the generating point outside the circle, we get a

hyperbola:

= 4-Y2-r2+4-a2-r2-r4+)<2-[-16-a2+4-r2]=0
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Example 12: Hyperbola Using MacLaurin’s Trisectrix like

construction
A cubic derived from the intersection of two lines rotating at different speeds

23 2 2
3-ax -x -ay -xy =0
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A similar construction can give a range of other curves. For example, a hyperbola:

2t

AT " C
(0,0) (a,0)

2 2
2:a:x-3:x +y =0
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Example 13: Ellipse as Envelope of Circles
Take the envelope of the circles whose centers lie on the x-axis and which have extrema
which lie on the unit circle. We find it is an ellipse:

2 2
-2+x +2'y =0
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Example 14: Hyperbola as an envelope of circles
Take the envelope of a family of circles centered on a line and whose radius is an
eccentricity times the distance from a focus.
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Example 15: Hyperbola as an Envelope of Lines

We take the envelope of the perpendicular bisectors of the line CD as C traverses the
circle AB.

= -a4+4-Y2-r2+2-a2-r2-r4+4-x-a-[az-r2)+>(2-[-4-a2+4-r2)=0

The result is a hyperbola with foci A and B.

What happens if D lies inside the circle?
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