Conics with Geometry Expressions

CONICS WITH	I GEOMETRY EXPRESSIONS		
INTRODUCTIO	ON		2
Example 1:	Circle of Apollonius	3	;
Example 2:	Intersection of two tangents to the curve y=x^2		
Example 3:	Parabola as locus of points equidistant between a point and a line	6	,
Example 4:	Parabolic Mirror		
Example 5:	Squeezing a circle between two circles	8	3
Example 6:	Ellipse as a locus	g)
Example 7:	Archimedes Trammel		
Example 8:	An Alternative Ellipse Construction	11	
Example 9:	Another ellipse	12)
Example 10:	"Bent Straw" Ellipse Construction		;
Example 11:	Similar construction for a Hyperbola	14	ļ
Example 12:	Hyperbola Using MacLaurin's Trisectrix like construction		;
Example 13:	Ellipse as Envelope of Circles	17	7
Example 14:	Hyperbola as an envelope of circles		
Evample 15:	TI 11 E 1 CT:	10	

Introduction

Geometry Expressions automatically generates algebraic expressions from geometric figures. For example in the diagram below, the user has specified that the triangle is right and has short sides length a and b. The system has calculated an expression for the length of the altitude:

In this article, we create a set of examples investigating conics with this tool.

Although Version 1 of Geometry Expressions does not have conics (other than circles) as built in types, they can be studied using loci.

Example 1: Circle of Apollonius

The Circle of Apollonius is the locus of points the ratio of whose distance from a pair of fixed points is constant:

How do we know this is a circle?

What is the center and radius?

You can always get Geometry Expressions to tell you: draw a circle and set its equation to be the same as the locus equation (copy and paste works fine)

Example 2: Intersection of two tangents to the curve $y=x^2$

We create the point (x,x^2) and draw its locus as x goes from -3 to 3. Now we create two tangents to the curve, and examine their intersection.

Example 3: Parabola as locus of points equidistant between a point and a line

Here is the equation of the parabola which is the locus of points equidistant from the point (-a,0) and the line X=a:

Example 4: Parabolic Mirror

A parabolic mirror focuses parallel rays into a single point. Where is that point? We create the parabola $y = a \cdot x^2$ and reflect a ray parallel to the y axis in the the tangent to the curve. We examine the y intercept of the image:

Example 5: Squeezing a circle between two circles

Take a circle radius 2a centered at (a,0) and a circle radius 4a centered at (-a,0). Now look at the locus of the center of the circle tangent to both.

It's an ellipse. From the drawing we can see that the semi major axis in the x direction is 3a. What is the semi major axis in the y direction?

Example 6: Ellipse as a locus

Here is the usual string based construction of an ellipse foci (-a,0) (a,0):

Example 7: Archimedes Trammel

A mechanism which generates an ellipse is Archimedes Trammel. The points C and E are constrained to run along the axes, while the distance between them is set to a-b. We trace the locus of the point D distance E along the same line. This gives an ellipse with semi major axes E and E

Example 8: An Alternative Ellipse Construction

Here is a construction (ascribed to Newton) which builds the ellipse from concentric circles radius equivalent to the semi major axes

Example 9: Another ellipse

This time take a circle and a point, and the location of all points equidistant from the circle and the point:

Example 10: "Bent Straw" Ellipse Construction

Here is another ellipse construction. Geometrically observe that the semi major axes are x-a and x+a. Can you verify this from the algebraic expression?

Example 11: Similar construction for a Hyperbola

If we do a similar construction, with the generating point outside the circle, we get a hyperbola:

Example 12: Hyperbola Using MacLaurin's Trisectrix like construction

A cubic derived from the intersection of two lines rotating at different speeds

A similar construction can give a range of other curves. For example, a hyperbola:

Example 13: Ellipse as Envelope of Circles

Take the envelope of the circles whose centers lie on the x-axis and which have extrema which lie on the unit circle. We find it is an ellipse:

Example 14: Hyperbola as an envelope of circles

Take the envelope of a family of circles centered on a line and whose radius is an eccentricity times the distance from a focus.

Example 15: Hyperbola as an Envelope of Lines

We take the envelope of the perpendicular bisectors of the line CD as C traverses the circle AB.

The result is a hyperbola with foci A and B.

What happens if D lies inside the circle?